Understanding Lamotrigine’s Role in the CNS and Possible Future Evolution

Author:

Costa Bárbara123ORCID,Vale Nuno123ORCID

Affiliation:

1. OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal

2. CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal

3. Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal

Abstract

The anti-epileptic drug lamotrigine (LTG) has been widely used to treat various neurological disorders, including epilepsy and bipolar disorder. However, its precise mechanism of action in the central nervous system (CNS) still needs to be determined. Recent studies have highlighted the involvement of LTG in modulating the activity of voltage-gated ion channels, particularly those related to the inhibition of neuronal excitability. Additionally, LTG has been found to have neuroprotective effects, potentially through the inhibition of glutamate release and the enhancement of GABAergic neurotransmission. LTG’s unique mechanism of action compared to other anti-epileptic drugs has led to the investigation of its use in treating other CNS disorders, such as neuropathic pain, PTSD, and major depressive disorder. Furthermore, the drug has been combined with other anti-epileptic drugs and mood stabilizers, which may enhance its therapeutic effects. In conclusion, LTG’s potential to modulate multiple neurotransmitters and ion channels in the CNS makes it a promising drug for treating various neurological disorders. As our understanding of its mechanism of action in the CNS continues to evolve, the potential for the drug to be used in new indications will also be explored.

Funder

Fundo Europeu de Desenvolvimento Regional

Fundação para a Ciência e a Tecnologia

Faculty of Medicine, University of Porto

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3