Abstract
AbstractMusculoskeletal disorders constitute the leading work-related health issue. Mechanical loading of the lower back contributes as a major risk factor and is prevalent in many tasks performed in logistics. The study aimed to compare acute effects of exoskeletons with different functional mechanisms in a logistic task. Twelve young, healthy individuals participated in the study. Five exoskeletons with different functional mechanisms were tested in a logistic task, consisting of lifting, carrying, and lowering a 13 kg box. By using electromyography (EMG), mean muscle activities of four muscles in the trunk were analyzed. Additionally, kinematics by task completion time and range of motion (RoM) of the major joints and segments were investigated. A main effect was found forMusculus erector spinae,Musculus multifidus, andMusculus latissimus dorsishowing differences in muscle activity reductions between exoskeletons. Reduction in ES mean activity compared to baseline was primarily during lifting from ground level. The exoskeletons SoftExo Lift and Cray X also showed ES mean reduction during lowering the box. Prolonged task duration during the lifting phase was found for the exoskeletons BionicBack, SoftExo Lift, and Japet.W. Japet.W showed a trend in reducing hip RoM during that phase. SoftExo Lift caused a reduction in trunk flexion during the lifting phase. A stronger trunk inclination was only found during lifting from the table for the SoftExo Lift and the Cray X. In conclusion, muscle activity reductions by exoskeleton use should not be assessed without taking their designed force paths into account to correctly interpret the effects for long-term injury prevention.
Publisher
Cambridge University Press (CUP)
Subject
Human-Computer Interaction,Rehabilitation,Biomedical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献