CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS INp-OPTIMAL FIELDS

Author:

DARNIÈRE LUCK,HALPUCZOK IMMANUEL

Abstract

AbstractWe prove that forp-optimal fields (a very large subclass ofp-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef’s paper [7]. We derive from it the existence of definable Skolem functions and strongp-minimality. Then we turn to stronglyp-minimal fields satisfying the Extreme Value Property—a property which in particular holds in fields which are elementarily equivalent to ap-adic one. For such fieldsK, we prove that every definable subset ofK×Kdwhose fibers overKare inverse images by the valuation of subsets of the value group is semialgebraic. Combining the two we get a preparation theorem for definable functions onp-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are in definable bijection iff they have the same dimension.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference15 articles.

1. Corps p-minimaux avec fonctions de skolem définissables;Mourgues;Prépublications de l’équipe de logique de paris 7, Séminaire de structures algébriques ordonnées,1999-2000

2. Formally p-adic Fields

3. [10] Haskell Deirdre and Macpherson Dugald , A version of o-minimality for the p-adics. this Journal, vol. 62 (1997), no. 4, pp. 1075–1092.

4. [6] Cluckers Raf and Leenknegt Eva , A version of p-adic minimality, this Journal, vol. 77 (2012), no. 2, pp. 621–630.

5. Analytic $p$-adic cell decomposition and integrals

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Definable completeness of P-minimal fields and applications;Journal of Mathematical Logic;2022-06-22

2. ŁOJASIEWICZ INEQUALITY IN P-MINIMAL STRUCTURES;Journal of Inequalities and Special Functions;2021-12-31

3. Exponential-constructible functions in P-minimal structures;Journal of Mathematical Logic;2019-11-27

4. RAMSEY GROWTH IN SOME NIP STRUCTURES;Journal of the Institute of Mathematics of Jussieu;2019-02-19

5. Semi‐algebraic triangulation over p‐adically closed fields;Proceedings of the London Mathematical Society;2018-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3