Definable completeness of P-minimal fields and applications

Author:

Cubides Kovacsics Pablo1,Delon Françoise2

Affiliation:

1. Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

2. Université de Paris and Sorbonne Université, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, F-75006 Paris, France

Abstract

We show that every definable nested family of closed and bounded subsets of a P-minimal field K has nonempty intersection. As an application we answer a question of Darnière and Halupczok showing that P-minimal fields satisfy the “extreme value property”: for every closed and bounded subset [Formula: see text] and every interpretable continuous function [Formula: see text] (where [Formula: see text] denotes the value group), f(U) admits a maximal value. Two further corollaries are obtained as a consequence of their work. The first one shows that every interpretable subset of [Formula: see text] is already interpretable in the language of rings, answering a question of Cluckers and Halupczok. This implies in particular that every P-minimal field is polynomially bounded. The second one characterizes those P-minimal fields satisfying a classical cell preparation theorem as those having definable Skolem functions, generalizing a result of Mourgues.

Funder

the ERC project TOSSIBERG

Publisher

World Scientific Pub Co Pte Ltd

Subject

Logic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3