Author:
KALININ BORIS,SADOVSKAYA VICTORIA
Abstract
AbstractWe consider transitive Anosov diffeomorphisms for which every periodic orbit has only one positive and one negative Lyapunov exponent. We prove various properties of such systems, including strong pinching, C1+β smoothness of the Anosov splitting, and C1 smoothness of measurable invariant conformal structures and distributions. We apply these results to volume-preserving diffeomorphisms with two-dimensional stable and unstable distributions and diagonalizable derivatives of the return maps at periodic points. We show that a finite cover of such a diffeomorphism is smoothly conjugate to an Anosov automorphism of 𝕋4; as a corollary, we obtain local rigidity for such diffeomorphisms. We also establish a local rigidity result for Anosov diffeomorphisms in dimension three.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献