Geometric barycentres of invariant measures for circle maps

Author:

JENKINSON OLIVER

Abstract

For a continuous circle map T, define the barycentre of any T-invariant probability measure \mu to be b(\mu)=\int_{S^1} z\, d\mu(z). The set \Omega of all such barycentres is a compact convex subset of \mathbb{C}. If T is conjugate to a rational rotation via a Möbius map, we prove \Omega is a disc. For every piecewise-onto expanding map we prove that the barycentre set has non-empty interior. In this case, each interior point is the barycentre of many invariant measures, but we prove that amongst these there is a unique one which maximizes entropy, and that this measure belongs to a distinguished two-parameter family of equilibrium states. This family induces a real-analytic radial foliation of int(\Omega), centred around the barycentre of the global measure of maximal entropy, where each ray is the barycentre locus of some one-parameter section of the family. We explicitly compute these rays for two examples. While developing this framework we also answer a conjecture of Z. Coelho [6] regarding limits of sequences of equilibrium states.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear thermodynamic formalism through the lens of rotation theory;Discrete and Continuous Dynamical Systems;2024

2. Problems and Features of Measurements;Models and Measures in Measurements and Monitoring;2021

3. A topological classification of locally constant potentials via zero-temperature measures;Transactions of the American Mathematical Society;2019-05-20

4. On the computability of rotation sets and their entropies;Ergodic Theory and Dynamical Systems;2018-08-10

5. Ergodic optimization in dynamical systems;Ergodic Theory and Dynamical Systems;2018-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3