Author:
BURR MICHAEL A.,SCHMOLL MARTIN,WOLF CHRISTIAN
Abstract
Let$f:X\rightarrow X$be a continuous dynamical system on a compact metric space$X$and let$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$be an$m$-dimensional continuous potential. The (generalized) rotation set$\text{Rot}(\unicode[STIX]{x1D6F7})$is defined as the set of all$\unicode[STIX]{x1D707}$-integrals of$\unicode[STIX]{x1D6F7}$, where$\unicode[STIX]{x1D707}$runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy$\unicode[STIX]{x210B}(w)$to each$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$. In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where$f$is a subshift of finite type. We prove that$\text{Rot}(\unicode[STIX]{x1D6F7})$is computable and that$\unicode[STIX]{x210B}(w)$is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general,$\unicode[STIX]{x210B}$is not continuous on the boundary of the rotation set when considered as a function of$\unicode[STIX]{x1D6F7}$and$w$. In particular,$\unicode[STIX]{x210B}$is, in general, not computable at the boundary of$\text{Rot}(\unicode[STIX]{x1D6F7})$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference60 articles.
1. Rotation sets for subshifts of finite type;Ziemian;Fund. Math.,1995
2. Unzerlegbare, nicht negative Matrizen
3. Computable Analysis
4. On computable numbers, with an application to the entscheidungsproblem;Turing;Proc. Lond. Math. Soc.,1936
5. Computability of topological pressure for sofic shifts with applications in statistical physics;Spandl;J. Univ. Comput. Sci.,2008
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献