Strange non-chaotic attractors in quasi-periodically forced circle maps: Diophantine forcing

Author:

JÄGER T.

Abstract

AbstractWe study parameter families of quasi-periodically forced (qpf) circle maps with Diophantine frequency. Under certain $\mathcal {C}^1$-open conditions concerning their geometry, we prove that these families exhibit non-uniformly hyperbolic behaviour, often referred to as the existence of strange non-chaotic attractors, on parameter sets of positive measure. This provides a nonlinear version of results by Young on quasi-periodic $\mathrm {SL}(2,\mathbb {R})$-cocycles and complements previous results in this direction which hold for sets of frequencies of positive measure, but did not allow for an explicit characterization of these frequencies. As an application, we study a qpf version of the Arnold circle map and show that the Arnold tongue corresponding to rotation number $1/2$collapses on an open set of parameters. The proof requires to perform a parameter exclusion with respect to some twist parameter and is based on the multiscale analysis of the dynamics on certain dynamically defined critical sets. A crucial ingredient is to obtain good control on the parameter dependence of the critical sets. Apart from the presented results, we believe that this step will be important for obtaining further information on the behaviour of parameter families like the qpf Arnold circle map.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3