Atomic Scale Analysis of Planar Defects in Polycrystalline Diamond

Author:

Erni Rolf,Freitag Bert,Hartel Peter,Müller Heiko,Tiemeijer Peter,van der Stam Michiel,Stekelenburg Mike,Hubert Dominique,Specht Petra,Garibay-Febles Vincente

Abstract

Planar defects in a polycrystalline diamond film were studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy (STEM). In both modes, sub-Ångström resolution was achieved by making use of two aberration-corrected systems; a TEM and a STEM CS-corrected microscope, each operated at 300 kV. For the first time, diamond in 〈110〉 zone-axis orientation was imaged in STEM mode at a resolution that allows for resolving the atomic dumbbells of carbon at a projected interatomic distance of 89 pm. Twin boundaries that show approximately the Σ3 CSL structure reveal at sub-Ångström resolution imperfections; that is, local distortions, which break the symmetry of the ideal Σ3 type twin boundary, are likely present. In addition to these imperfect twin boundaries, voids on the atomic level were observed. It is proposed that both local distortions and small voids enhance the mechanical toughness of the film by locally increasing the critical stress intensity factor.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3