Dark-Field Imaging of Thin Specimens with a Forescatter Electron Detector at Low Accelerating Voltage

Author:

Brodusch Nicolas,Demers Hendrix,Gauvin Raynald

Abstract

AbstractA forescatter electron detector (FSED) was used to acquire dark-field micrographs (DF-FSED) on thin specimens with a scanning electron microscope. The collection angles were adjusted with the detector distance from the beam axis, which is similar to the camera length of the scanning transmission electron microscope annular DF detectors. The DF-FSED imaging resolution was calculated with SMART-J on an aluminum alloy and carbon nanotubes (CNTs) decorated with platinum nanoparticles. The resolution was three to six times worse than with bright-field imaging. Measurements of nanometer-size objects showed a similar feature size in DF-FSED imaging despite a signal-to-noise ratio 12 times smaller. Monte Carlo simulations were used to predict the variation of the contrast of a CNT/Fe/Pt system as a function of the collection angles. It was constant for very high collection angles (>450 mrad) and confirmed experimentally. The reverse contrast between carbon black particles and the smallest titanium dioxide (TiO2) nanoparticles was predicted by Monte Carlo simulations and observed in the DF-FSED micrograph of a battery electrode coating. However, segmentation of the micrograph was not able to isolate the TiO2 nanoparticle phase because of the close contrast of small TiO2 nanoparticles compared to the C black particles.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3