Use of Polycapillary Optics to Increase the Effective Area of Microcalorimeter Spectrometers

Author:

Wollman D. A.,Jezewski Christopher,Hilton G. C.,Xiao Qi-Fan,Irwin K. D.,Dulcie L. L.,Martinis John M.

Abstract

Although the performance of high-energy-resolution microcalorimeter spectrometers for x-ray microanalysis is encouraging, the future widespread acceptance of these spectrometers as valuable microanalysis instruments depends on improvements in both achievable count rate and geometrical x-ray collection efficiency. While the maximum output count rate of our microcalorimeter (∼160 s−1) is much less than that of conventional EDS detectors operating at their highest energy resolution (∼3000 s−1), we are confident that we can significantly improve the count rate without loss of energy resolution (∼10 eV FWHM over a broad energy range). Increasing the area (and thus solid angle) of the microcalorimeter is a more difficult problem, however, as the best microcalorimeter performance is achieved using small-area (typically 250 μm by 250 μm) absorbers with low heat capacity.This problem can be solved by using an x-ray lens to increase the collection efficiency of the microcalorimeter spectrometer. A polycapillary optic consisting of tens of thousands of fused capillaries can collect x-rays from a point x-ray source over a large solid angle and focus the x-rays onto the small-area absorber of the microcalorimeter.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference2 articles.

1. Contribution of the U.S. Government; not subject to copyright. This work was supported in part by the NIST Office of Microelectronics Programs.

2. Wollman, D. A. et al., these proceedings.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3