Minimizing Transmission Electron Microscopy Beam Damage during the Study of Surface Reactions on Sodium Chloride

Author:

Allen Heather C.,Mecartney Martha L.,Hemminger John C.

Abstract

Electron beam damage is a significant limitation for transmission electron microscopy (TEM) studies of beam-sensitive samples. An approach for studying surface reactions on alkali halide crystals using 200 kV TEM is presented. Experiments were designed to monitor the reaction of NaCl crystals with HNO3 gas followed by water vapor to form solid NaNO3. During beam damage experiments, TEM micrographs record structural changes to both NaCl and NaNO3, including dislocation loops, void formation, and decomposition. Sample decomposition can be successfully minimized by a combination of commonly used techniques: (1) focusing the beam adjacent to the area of interest, (2) lowering the electron density, (3) choosing to image larger (micrometer- versus submicrometer-sized) alkali halide crystals, and (4) lowering temperature by the use of a liquid nitrogen cooling stage. From these results, additional studies were designed that monitored sequential experiments. Sensitive micrometer-sized sodium chloride single crystals before and after exposure to nitric acid vapor and water vapor and the subsequent growth of submicrometer-sized sodium nitrate single crystals could then be successfully imaged using TEM.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3