Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy

Author:

Brostrøm Anders,Kling Kirsten I.,Hougaard Karin S.,Mølhave Kristian

Abstract

AbstractParticulate matter (PM) air pollution is a central concern for public health. Current legislation relies on a mass concentration basis, despite broad acceptance that mass alone is insufficient to capture the complexity and toxicity of airborne PM, calling for additional and more comprehensive measurement techniques. We study to what extent scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) can be applied for physicochemical characterization of complex aerosols, and investigate its potential for separating particle properties on a single particle basis, even for nanosized particles. SEM/EDS analysis is performed on impactor samples of laboratory generated aerosols, consisting of either NaCl, Halloysite fibers, soot-like Printex90 agglomerates, or their combination. The analysis is automated and performed as EDS maps, covering a statistically relevant number of particles, with analysis times of approximately one hour/sample. Derived size distributions are compared to scanning mobility particle sizer (SMPS) and electric low-pressure impactor (ELPI) results. A method is presented to estimate airborne number concentrations and size distributions directly from SEM results, within a factor 10 of SMPS and ELPI outcomes. A classification scheme is developed based on elemental composition, providing class-specific information with individual particle statistics on shape, size, and mixing state. This can identify primary particles for source apportionment and enables easy distinction between fibrous and dense particle classes, e.g. for targeted risk assessments. Overall, the SEM/EDS analysis provides a more detailed physicochemical characterization of PM than online measurements, e.g. SMPS and ELPI. The method has the potential to improve assessments of PM exposure and risk, and facilitates source identification, even without prior knowledge at sampling.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3