Diversity and tectonics: predictions from neutral theory

Author:

Holland Steven M.

Abstract

AbstractNumerical simulations of neutral metacommunities are used here to predict the effects of growth and shrinkage of metacommunities, as well as their separation and merging caused by continental collision and rifting and their secondary eustatic effects. Although growth and shrinkage of metacommunities predictably change diversity, separating and merging metacommunities have counterintuitive effects. Separating and merging metacommunities change diversity within the individual areas, especially so for smaller areas, but they cause no change in total diversity of the system, contrary to previous predictions. The response times of metacommunities are likely to be geologically undetectable except for enormously large systems. These models can be used to predict the plate-tectonic effects on the diversity of terrestrial, coastal-marine, deep-marine, and oceanic-island systems. Of these, global and regional coastal-marine systems are the most acutely sensitive to the changes in area and fragmentation caused by plate tectonics. Oceanic-island systems also experience global and regional changes in diversity during supercontinent breakup and assembly, with the global effects driven by the changing length of volcanic arcs, and the regional effects also driven by secondary eustatic changes in shallow-marine area. Although individual terrestrial provinces or continents may experience substantial changes in diversity from rifting and collision, global terrestrial diversity should be unchanged except for the relatively modest contributions caused by the secondary eustatic effects on land area. These changes in diversity may be reinforced or counteracted by the changing latitudinal position of metacommunities.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3