Ecological structure of diversity-dependent diversification in Phanerozoic marine bivalves

Author:

Foote Michael1ORCID,Edie Stewart M.2ORCID,Jablonski David1ORCID

Affiliation:

1. Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA

2. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA

Abstract

Rigorous analysis of diversity-dependence—the hypothesis that the rate of proliferation of new species is inversely related to standing diversity—requires consideration of the ecology of the organisms in question. Differences between infaunal marine bivalves (living entirely within the sediment) and epifaunal forms (living partially or completely above the sediment–water interface) predict that these major ecological groups should have different diversity dynamics: epifaunal species may compete more intensely for space and be more susceptible to predation and physical disturbance. By comparing detrended standing diversity with rates of diversification, origination, and extinction in this exceptional fossil record, we find that epifaunal bivalves experienced significant, negative diversity-dependence in origination and net diversification, whereas infaunal forms show little appreciable relationship between diversity and evolutionary rates. This macroevolutionary contrast is robust to the time span over which dynamics are analysed, whether mass-extinction rebounds are included in the analysis, the treatment of stratigraphic ranges that are not maximally resolved, and the details of detrending. We also find that diversity-dependence persists over hundreds of millions of years, even though diversity itself rises nearly exponentially, belying the notion that diversity-dependence must imply equilibrial diversity dynamics.

Funder

National Aeronautics and Space Administration

University of Chicago

Smithsonian Institution

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3