Portraits of preperiodic points for rational maps

Author:

GHIOCA DRAGOS,NGUYEN KHOA,TUCKER THOMAS J.

Abstract

AbstractLet K be a function field over an algebraically closed field k of characteristic 0, let ϕ ∈ K(z) be a rational function of degree at least equal to 2 for which there is no point at which ϕ is totally ramified and let α ∈ K. We show that for all but finitely many pairs (m, n) ∈ $\mathbb{Z}$⩾0 × $\mathbb{N}$ there exists a place $\mathfrak{p}$ of K such that the point α has preperiod m and minimum period n under the action of ϕ. This answers a conjecture made by Ingram–Silverman [13] and Faber–Granville [8]. We prove a similar result, under suitable modification, also when ϕ has points where it is totally ramified. We give several applications of our result, such as showing that for any tuple (c0, . . ., cd−2) ∈ kd−1 and for almost all pairs (mi, ni) ∈ $\mathbb{Z}$⩾0 × $\mathbb{N}$ for i = 0, . . ., d − 2, there exists a polynomial fk[z] of degree d in normal form such that for each i = 0, . . ., d − 2, the point ci has preperiod mi and minimum period ni under the action of f.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moduli spaces for dynamical systems with portraits;Illinois Journal of Mathematics;2020-09-01

2. Finite index theorems for iterated Galois groups of cubic polynomials;Mathematische Annalen;2018-03-20

3. Good reduction and Shafarevich-type theorems for dynamical systems with portrait level structures;Pacific Journal of Mathematics;2018-03-13

4. Orbits of polynomial dynamical systems modulo primes;Proceedings of the American Mathematical Society;2017-12-26

5. Preperiodic portraits for unicritical polynomials over a rational function field;Transactions of the American Mathematical Society;2017-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3