Orbits of polynomial dynamical systems modulo primes

Author:

Chang Mei-Chu,D’Andrea Carlos,Ostafe Alina,Shparlinski Igor,Sombra Martín

Abstract

We present lower bounds for the orbit length of reduction modulo primes of parametric polynomial dynamical systems defined over the integers, under a suitable hypothesis on its set of preperiodic points over C \mathbb {C} . Applying recent results of Baker and DeMarco (2011) and of Ghioca, Krieger, Nguyen and Ye (2017), we obtain explicit families of parametric polynomials and initial points such that the reductions modulo primes have long orbits, for all but a finite number of values of the parameters. This generalizes a previous lower bound due to Chang (2015). As a by-product, we also slightly improve a result of Silverman (2008) and recover a result of Akbary and Ghioca  (2009) as special extreme cases of our estimates.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Periods of orbits modulo primes;Akbary, Amir;J. Number Theory,2009

2. De Gruyter Expositions in Mathematics;Anashin, Vladimir,2009

3. Preperiodic points and unlikely intersections;Baker, Matthew;Duke Math. J.,2011

4. Special curves and postcritically finite polynomials;Baker, Matthew;Forum Math. Pi,2013

5. Periods of rational maps modulo primes;Benedetto, Robert L.;Math. Ann.,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The size of semigroup orbits modulo primes;Pacific Journal of Mathematics;2023-11-03

2. An effective local-global principle and additive combinatorics in finite fields;Journal d'Analyse Mathématique;2023-07-18

3. Current trends and open problems in arithmetic dynamics;Bulletin of the American Mathematical Society;2019-03-01

4. Reductions modulo primes of systems of polynomial equations and algebraic dynamical systems;Transactions of the American Mathematical Society;2018-05-03

5. MULTIPLICATIVE ORDERS IN ORBITS OF POLYNOMIALS OVER FINITE FIELDS;Glasgow Mathematical Journal;2017-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3