Diophantine approximation on the parabola with non-monotonic approximation functions

Author:

HUANG JING–JING

Abstract

AbstractWe show that the parabola is of strong Khintchine type for convergence, which is the first result of its kind for curves. Moreover, Jarník type theorems are established in both the simultaneous and the dual settings, without monotonicity on the approximation function. To achieve the above, we prove a new counting result for the number of rational points with fixed denominators lying close to the parabola, which uses Burgess’s bound on short character sums.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference20 articles.

1. On the application of I. M. Vinogradov’s method to the solution of a problem of the metric theory of numbers;Kubilyus;Dokl. Akad. Nauk SSSR,1949

2. Explicit bounds for rational points near planar curves and metric Diophantine approximation

3. [13] Huang, J.–J. . The density of rational points near hypersurfaces. Preprint available at arXiv:1711.01390 [math.NT].

4. Khintchine-type theorems on manifolds

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremal Affine Subspaces and Khintchine-Jarník Type Theorems;Geometric and Functional Analysis;2024-02

2. Simultaneous p-adic Diophantine approximation;Mathematical Proceedings of the Cambridge Philosophical Society;2023-01-31

3. On a Counting Theorem for Weakly Admissible Lattices;International Mathematics Research Notices;2020-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3