On a Counting Theorem for Weakly Admissible Lattices

Author:

Fregoli Reynold1

Affiliation:

1. Department of Mathematics, Royal Holloway, University of London, TW20 0EX Egham, UK

Abstract

Abstract We give a precise estimate for the number of lattice points in certain bounded subsets of $\mathbb{R}^{n}$ that involve “hyperbolic spikes” and occur naturally in multiplicative Diophantine approximation. We use Wilkie’s o-minimal structure $\mathbb{R}_{\exp }$ and expansions thereof to formulate our counting result in a general setting. We give two different applications of our counting result. The 1st one establishes nearly sharp upper bounds for sums of reciprocals of fractional parts and thereby sheds light on a question raised by Lê and Vaaler, extending previous work of Widmer and of the author. The 2nd application establishes new examples of linear subspaces of Khintchine type thereby refining a theorem by Huang and Liu. For the proof of our counting result, we develop a sophisticated partition method that is crucial for further upcoming work on sums of reciprocals of fractional parts over distorted boxes.

Funder

Royal Holloway, University of London

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference23 articles.

1. On multiplicatively badly approximable numbers;Badziahin,2013

2. Counting lattice points and o-minimal structures;Barroero,2014

3. Sets of exact ’logarithmic’ order in the theory of Diophantine approximation;Beresnevich;Math. Annalen.,2001

4. Sums of reciprocals of fractional parts and multiplicative Diophantine approximation;Beresnevich;Mem. Am. Math. Soc.,2017

5. Multiplicative Diophantine approximation, dynamical systems and Diophantine approximation;Bugeaud,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counting multiplicative approximations;The Ramanujan Journal;2022-08-18

2. Multiplicatively badly approximable matrices up to logarithmic factors;Mathematical Proceedings of the Cambridge Philosophical Society;2021-05-17

3. Simultaneous Approximation on Affine Subspaces;International Mathematics Research Notices;2019-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3