Abstract
If A is a complex Banach algebra the socle, denoted by Soc A, is by definition the sum of all minimal left (resp. right) ideals of A. Equivalently the socle is the sum of all left ideals (resp. right ideals) of the form Ap (resp. pA) where p is a minimal idempotent, that is p2 = p and pAp = ℂp. If A is finite-dimensional then A coincides with its socle. If A = B(X), the algebra of bounded operators on a Banach space X, the socle of A consists of finite-rank operators. For more details about the socle see [1], pp. 78–87 and [3], pp. 110–113.
Publisher
Cambridge University Press (CUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献