Abstract
AbstractThe Johnson kernel is the subgroup of the mapping class group of a surface generated by Dehn twists along bounding simple closed curves, and has the second Johnson homomorphism as a free abelian quotient. In terms of the representation theory of the symplectic group, we give a complete description of cup products of two classes in the first rational cohomology of the Johnson kernel obtained by the rational dual of the second Johnson homomorphism.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献