Affiliation:
1. Department of Mathematics, Pittsburg State University, 1701 S Broadway, Pittsburg, KS 66762, USA
Abstract
The Torelli group, [Formula: see text], is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface. There are three types of elements that naturally arise in studying [Formula: see text]: bounding pair maps, separating twists, and simply intersecting pair maps (SIP-maps). Historically the first two types of elements have been the focus of the literature on [Formula: see text], while SIP-maps have received relatively little attention until recently, due to an infinite presentation of [Formula: see text] introduced by Putman that uses all three types of elements. We will give a topological characterization of the image of an SIP-map under the Johnson homomorphism and Birman–Craggs–Johnson homomorphism. We will also classify which SIP-maps are in the kernel of these homomorphisms. Then we will look at the subgroup generated by all SIP-maps, SIP (Sg), and show it is an infinite index subgroup of [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory