Co-culture embedded in cumulus clumps promotes maturation of denuded oocytes and reconstructs gap junctions between oocytes and cumulus cells

Author:

Feng Guixue,Shi Deshun,Yang Shufang,Wang Xiaoli

Abstract

SummaryThe present study was undertaken to establish an effective method for in vitro maturation (IVM) of denuded oocytes (DOs) by simulating the ovarian three-dimensional status in vivo using buffalo ovarian tissues or cumulus cells, so as to provide a model for investigating the mechanisms of oocyte maturation. Buffalo cumulus–oocyte complexes from ovaries taken at slaughter were denuded by pipetting, and then allocated randomly into four groups for IVM by direct culture in maturation medium (M1, control group), co-culture with a monolayer of cumulus cells (M2), embedded in cumulus cell clumps (M3) and ovarian tissue (M4) for 24 h. The nuclear maturation of DOs was assessed by the extrusion of the first polar body and the cytoplasmic maturation was evaluated by subsequently developmental capacity after parthenogenetic activation. More DOs matured to MII (56.89%) and developed to blastocysts (25.75%) when they were matured in vitro with M3 in comparison with DOs matured in vitro with M1 (45.14 and 15.97%) and M4 (40.48 and 13.49%). Further detection of gap junctions by injecting Lucifer yellow directly into cytoplasm of matured DOs with adherent cumulus cells and scanning with confocal microscope showed that Lucifer yellow were found in nine out of 11 the adherent cumulus cells in M3, indicating that the gap junctions between oocytes and cumulus cells was reconstructed in vitro. These results indicate that co-culture of DOs embedded in cumulus cell clumps can improve their nuclear and cytoplasmic maturation of DOs, possibly through the reconstruction of gap junctions in vitro.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3