Bicategories in univalent foundations

Author:

Ahrens BenediktORCID,Frumin DanORCID,Maggesi MarcoORCID,Veltri Niccolò,van der Weide Niels

Abstract

AbstractWe develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories in a modular fashion, we develop displayed bicategories, an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. We demonstrate the applicability of this notion and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-categories is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference38 articles.

1. Leinster, T. (1998). Basic Bicategories. https://arxiv.org/abs/math/9810017.

2. Biequivalences in tricategories;Gurski;Theory and Applications of Categories,2012

3. Reports of the Midwest Category Seminar

4. Coq Development Team, T. (2019). The Coq Proof Assistant Reference Manual, version 8.10.

5. Voevodsky, V. (2014). The Origins and Motivations of Univalent Foundations - A Personal Mission to Develop Computer Proof Verification to Avoid Mathematical Mistakes. Published in The Institute Letter Summer 2014, https://www.ias.edu/ideas/2014/voevodsky-origins.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Displayed Monoidal Categories for the Semantics of Linear Logic;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

2. Univalent Double Categories;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

3. Bicategorical type theory: semantics and syntax;Mathematical Structures in Computer Science;2023-10-17

4. Semantics for two-dimensional type theory;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3