Bicategorical type theory: semantics and syntax

Author:

Ahrens BenediktORCID,North Paige Randall,van der Weide NielsORCID

Abstract

AbstractWe develop semantics and syntax for bicategorical type theory. Bicategorical type theory features contexts, types, terms, and directed reductions between terms. This type theory is naturally interpreted in a class of structured bicategories. We start by developing the semantics, in the form of comprehension bicategories. Examples of comprehension bicategories are plentiful; we study both specific examples as well as classes of examples constructed from other data. From the notion of comprehension bicategory, we extract the syntax of bicategorical type theory, that is, judgment forms and structural inference rules. We prove soundness of the rules by giving an interpretation in any comprehension bicategory. The semantic aspects of our work are fully checked in the Coq proof assistant, based on the UniMath library.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference46 articles.

1. Directed Algebraic Topology and Concurrency

2. Gurski, M. N. (2006). An Algebraic Theory of Tricategories. Phd thesis, University of Chicago.

3. Nuyts, A. (2015). Towards a Directed Homotopy Type Theory Based on 4 Kinds of Variance. Master’s thesis, KU Leuven. https://anuyts.github.io/files/mathesis.pdf.

4. Seely, R. A. G. (1987). Modelling computations: a 2-categorical framework. In: Proceedings of the Symposium on Logic in Computer Science (LICS’87), Ithaca, New York, USA, June 22–25, 1987, IEEE Computer Society, 65–71.

5. Van den Berg, B. and Garner, R. (2011). Types are weak $\omega$ -groupoids. Proceedings of the London Mathematical Society 102 (2) 370–394.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-sided cartesian fibrations of synthetic $$(\infty ,1)$$-categories;Journal of Homotopy and Related Structures;2024-06-21

2. Formalizing the ∞-Categorical Yoneda Lemma;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3