On the expressiveness of π-calculus for encoding mobile ambients

Author:

BRODO LINDA

Abstract

We investigate the expressiveness of two classical distributed paradigms by defining the first encoding of the pure mobile ambient calculus into the synchronous π-calculus. Our encoding, whose correctness has been proved by relying on the notion of operational correspondence, shows how the hierarchical ambient structure can be reformulated within a flat channel interconnection amongst independent processes, without centralised control. To easily handle the computation for simulating a capability, we introduce the notions of simulating trace (representing the computation that a π-calculus process has to execute to mimic a capability) and of aborting trace (representing the computation that a π-calculus process executes when the simulation of a capability cannot succeed). Thus, the encoding may introduce loops, but, as it will be shown, the number of steps of any trace, therefore of any aborting trace, is limited, and the number of states of the transition system of the encoding processes still remains finite. In particular, an aborting trace makes a sort of backtracking, leaving the involved sub-processes in the same starting configurations. We also discuss two run-time support methods to make these loops harmless at execution time. Our work defines a relatively simple, direct, and precise translation that reproduces the ambient structure by means of channel links, and keeps track of the dissolving of an ambient.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A process algebraic approach to reaction systems;Theoretical Computer Science;2021-08

2. Dynamic Slicing for Concurrent Constraint Languages;Fundamenta Informaticae;2020-12-10

3. The link-calculus for open multiparty interactions;Information and Computation;2020-12

4. Verification Techniques for a Network Algebra;Fundamenta Informaticae;2020-02-08

5. A formal approach to open multiparty interactions;Theoretical Computer Science;2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3