Author:
CAVE ANDREW,PIENTKA BRIGITTE
Abstract
Proofs with logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe two case studies using the proof environmentBeluga: First, we explain the mechanization of the weak normalization proof for the simply typed lambda-calculus; second, we outline how to mechanize the completeness proof of algorithmic equality for simply typed lambda-terms where we reason about logically equivalent terms. The development of these proofs inBelugarelies on three key ingredients: (1) we encode lambda-terms together with their typing rules, operational semantics, algorithmic and declarative equality using higher order abstract syntax (HOAS) thereby avoiding the need to manipulate and deal with binders, renaming and substitutions, (2) we take advantage ofBeluga's support for representing derivations that depend on assumptions and first-class contexts to directly state inductive properties such as logical relations and inductive proofs, (3) we exploitBeluga's rich equational theory for simultaneous substitutions; as a consequence, users do not need to establish and subsequently use substitution properties, and proofs are not cluttered with references to them. We believe these examples demonstrate thatBelugaprovides the right level of abstractions and primitives to mechanize challenging proofs using HOAS encodings. It also may serve as a valuable benchmark for other proof environments.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献