A case study in programming coinductive proofs: Howe’s method

Author:

MOMIGLIANO ALBERTOORCID,PIENTKA BRIGITTE,THIBODEAU DAVID

Abstract

Bisimulation proofs play a central role in programming languages in establishing rich properties such as contextual equivalence. They are also challenging to mechanize, since they require a combination of inductive and coinductive reasoning on open terms. In this paper, we describe mechanizing the property that similarity in the call-by-name lambda calculus is a pre-congruence using Howe’s method in the Beluga formal reasoning system. The development relies on three key ingredients: (1) we give a higher order abstract syntax (HOAS) encoding of lambda terms together with their operational semantics as intrinsically typed terms, thereby avoiding not only the need to deal with binders, renaming and substitutions, but keeping all typing invariants implicit; (2) we take advantage of Beluga’s support for representing open terms using built-in contexts and simultaneous substitutions: this allows us to directly state central definitions such as open simulation without resorting to the usual inductive closure operation and to encode very elegantly notoriously painful proofs such as the substitutivity of the Howe relation; (3) we exploit the possibility of reasoning by coinduction in Beluga’s reasoning logic. The end result is succinct and elegant, thanks to the high-level abstractions and primitives Beluga provides. We believe that this mechanization is a significant example that illustrates Beluga’s strength at mechanizing challenging (co)inductive proofs using HOAS encodings.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference64 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Beluga Formalization of the Harmony Lemma in the π-Calculus;Electronic Proceedings in Theoretical Computer Science;2024-07-08

2. Formal Reasoning Using Distributed Assertions;Frontiers of Combining Systems;2023

3. POPLMark reloaded: Mechanizing proofs by logical relations;Journal of Functional Programming;2019

4. Mechanized Metatheory Revisited;Journal of Automated Reasoning;2018-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3