On the computational complexity of dynamic slicing problems for program schemas

Author:

DANICIC SEBASTIAN,HIERONS ROBERT. M.,LAURENCE MICHAEL R.

Abstract

Given a program, a quotient can be obtained from it by deleting zero or more statements. The field of program slicing is concerned with computing a quotient of a program that preserves part of the behaviour of the original program. All program slicing algorithms take account of the structural properties of a program, such as control dependence and data dependence, rather than the semantics of its functions and predicates, and thus work, in effect, with program schemas. The dynamic slicing criterion of Korel and Laski requires only that program behaviour is preserved in cases where the original program follows a particular path, and that the slice/quotient follows this path. In this paper we formalise Korel and Laski's definition of a dynamic slice as applied to linear schemas, and also formulate a less restrictive definition in which the path through the original program need not be preserved by the slice. The less restrictive definition has the benefit of leading to smaller slices. For both definitions, we compute complexity bounds for the problems of establishing whether a given slice of a linear schema is a dynamic slice and whether a linear schema has a non-trivial dynamic slice, and prove that the latter problem is NP-hard in both cases. We also give an example to prove that minimal dynamic slices (whether or not they preserve the original path) need not be unique.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference42 articles.

1. On Ianov's Program Schemata

2. Paterson M. S. (1967) Equivalence Problems in a Model of Computation, Ph.D. thesis, University of Cambridge.

3. Computing polynomial program invariants

4. Program Slicing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Static Backward Slicing of Non-deterministic Programs and Systems;ACM Transactions on Programming Languages and Systems;2018-08-29

2. Statistics and recognition for software birthmark based on clustering analysis;Journal of Applied Statistics;2016-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3