Static Backward Slicing of Non-deterministic Programs and Systems

Author:

Danicic Sebastian1,Laurence Michael R.2

Affiliation:

1. Department of Computing, Goldsmiths, University of London, UK

2. Department of Computer Science, University of Sheffield, UK

Abstract

A theory of slicing non-deterministic programs and systems is developed. Non-deterministic programs and systems are represented as non-deterministic program graphs (NDPGs) that allow arbitrary non-deterministic branching to be expressed. Structural and semantic relationships that must exist between an NDPG and (1) its non-termination insensitive (weak) slices and (2) its non-termination sensitive (strong) slices are defined. Weak and strong commitment closure are introduced. These are the NDPG equivalents of being closed under non-termination sensitive and non-termination insensitive control dependence; properties defined on subsets of vertices of the equivalent deterministic structure: the control flow graph. It is proved that if a subset of the vertices of an NDPG is both data dependence closed and (weak/strong) commitment closed, then the resulting induced graph will, indeed, satisfy our structural and semantic requirements. O ( n 3 ) algorithms for computing minimal data and weak/strong commitment closed sets are given. The resulting induced graphs are thus guaranteed to be weak and strong slices, respectively. It is demonstrated, with examples, that programs written in Dijkstra's non-deterministic guarded command language (DNGCL) can be converted to NDPGs to which our slicing algorithms can then be applied. It is proved that the resulting slices (NDPGs) can always be converted back to valid DNGCL programs, highlighting the applicability of our approach to slicing at the source code level.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3