Reproducibility of Semi-Automated Measurement of Carotid Stenosis on CTA

Author:

White Jeremy H.,Bartlett Eric S.,Bharatha Aditya,Aviv Richard I.,Fox Allan J.,Thompson Andrew L.,Bitar Richard,Symons Sean P.

Abstract

Purpose:To compare the reproducibility of semi-automated vessel analysis software to manual measurement of carotid artery stenosis on computed tomography angiography (CTA).Methods:Two observers separately analyzed 81 carotid artery CTAs using semi-automated vessel analysis software according to a blinded protocol. The software measured the narrowest stenosis in millimeters (mm), distal internal carotid artery (ICA) in mm, and calculated percent stenosis based on NASCET criteria. One observer performed this task twice on each carotid, the second analysis delayed two months in order to mitigate recall bias. Two other observers manually measured the narrowest stenosis in mm, distal ICA in mm, and calculated NASCET percent stenosis in a blinded fashion. Correlation coefficients were calculated for each group comparing the narrowest stenosis in mm, distal ICA in mm, and NASCET percent stenosis.Results:The semi-automated vessel analysis software provided excellent intraobserver correlation for narrowest stenosis in mm, distal ICA in mm, and NACSET percent stenosis (Pearson correlation coefficients of 0.985, 0.954, and 0.977 respectively). The semi-automated vessel analysis software provided excellent interobserver correlation (0.925, 0.881, and 0.892 respectively). The interobserver correlation for manual measurement was good (0.595, 0.625, and 0.555 respectively). There was a statistically significant difference in the interobserver correlation between the semi-automated vessel analysis software observers and the manual measurement observers (P < 0.001).Conclusion:Semi-automated vessel analysis software is a highly reproducible method of quantifying carotid artery stenosis on CTA. In this study, semi-automated vessel analysis software determination of carotid stenosis was shown to be more reproducible than manual measurement.

Publisher

Cambridge University Press (CUP)

Subject

Clinical Neurology,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3