Pre-post effect sizes should be avoided in meta-analyses

Author:

Cuijpers P.,Weitz E.,Cristea I. A.,Twisk J.

Abstract

AimsThe standardised mean difference (SMD) is one of the most used effect sizes to indicate the effects of treatments. It indicates the difference between a treatment and comparison group after treatment has ended, in terms of standard deviations. Some meta-analyses, including several highly cited and influential ones, use the pre-post SMD, indicating the difference between baseline and post-test within one (treatment group).MethodsIn this paper, we argue that these pre-post SMDs should be avoided in meta-analyses and we describe the arguments why pre-post SMDs can result in biased outcomes.ResultsOne important reason why pre-post SMDs should be avoided is that the scores on baseline and post-test are not independent of each other. The value for the correlation should be used in the calculation of the SMD, while this value is typically not known. We used data from an ‘individual patient data’ meta-analysis of trials comparing cognitive behaviour therapy and anti-depressive medication, to show that this problem can lead to considerable errors in the estimation of the SMDs. Another even more important reason why pre-post SMDs should be avoided in meta-analyses is that they are influenced by natural processes and characteristics of the patients and settings, and these cannot be discerned from the effects of the intervention. Between-group SMDs are much better because they control for such variables and these variables only affect the between group SMD when they are related to the effects of the intervention.ConclusionsWe conclude that pre-post SMDs should be avoided in meta-analyses as using them probably results in biased outcomes.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Public Health, Environmental and Occupational Health,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3