On triadic resonance as an instability mechanism in precessing cylinder flow

Author:

Albrecht ThomasORCID,Blackburn Hugh M.,Lopez Juan M.ORCID,Manasseh Richard,Meunier PatriceORCID

Abstract

Contained rotating flows subject to precessional forcing are well known to exhibit rapid and energetic transitions to disorder. Triadic resonance of inertial modes has been previously proposed as an instability mechanism in such flows, and that idea was developed into a successful model for predicting instability in a cylindrical container when departures from solid-body rotation are sufficiently small. Using direct numerical simulation and dynamic mode decomposition, we analyse instabilities of precessing cylinder flows whose three-dimensional basic states, steady in the gimbal frame of reference, may depart substantially from solid-body rotation. In the gimbal frame, the instability can be interpreted as resulting from a supercritical Hopf bifurcation that results in a limit-cycle flow. In the cylinder frame of reference, the basic state is a rotating wave with azimuthal wavenumber $m=1$, and the instability satisfies triadic-resonance conditions with the instability mode maintaining a fixed orientation with respect to the basic state. Thus, we are able to demonstrate the existence of two alternative but congruent explanations for the instability. Additionally, we show that basic states may depart substantially from solid-body rotation even with modest cylinder tilt angles, and growth rates for instabilities may be sufficiently large that nonlinear saturation to disordered states can occur within approximately ten cylinder revolutions, in agreement with experimental observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3