Precession of a rapidly rotating cylinder flow: traverse through resonance

Author:

Marques Francisco,Lopez Juan M.

Abstract

Recent experiments using a rapidly rotating and precessing cylinder have shown that for specific values of the precession rate, aspect ratio and tilt angle, sudden catastrophic transitions to turbulence occur. Even if the precessional forcing is not too strong, there can be intermittent recurrences between a laminar state and small-scale chaotic flow. The inviscid linearized Navier–Stokes equations have inertial-wave solutions called Kelvin eigenmodes. The precession forces the flow to have azimuthal wavenumber $m=1$ (spin-over mode). Depending on the cylinder aspect ratio and on the ratio of the rotating and precessing frequencies, additional Kelvin modes can be in resonance with the spin-over mode. This resonant flow would grow unbounded if not for the presence of viscous and nonlinear effects. In practice, one observes a rapid transition to turbulence, and the precise nature of the transition is not entirely clear. When both the precessional forcing and viscous effects are small, weakly nonlinear models and experimental observations suggest that triadic resonance is at play. Here, we used direct numerical simulations of the full Navier–Stokes equations in a narrow region of parameter space where triadic resonance has been previously predicted from a weakly nonlinear model and observed experimentally. The detailed parametric studies enabled by the numerics reveal the complex dynamics associated with weak precessional forcing, involving symmetry-breaking, hysteresis and heteroclinic cycles between states that are quasiperiodic, with two or three independent frequencies. The detailed analysis of these states leads to associations of physical mechanisms with the various time scales involved.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3