Abstract
We examine the dissolution of a sloping solid surface driven by turbulent compositional convection. The scaling analysis presented by Kerr & McConnochie (J. Fluid Mech., vol. 765, 2015, pp. 211–228) for the dissolution of a vertical wall is extended to the case of a sloping wall. The model has no free parameters and no dependence on height. It predicts that while the interfacial temperature and interfacial composition are independent of the slope, the dissolution velocity is proportional to $\cos ^{2/3}\unicode[STIX]{x1D703}$, where $\unicode[STIX]{x1D703}$ is the angle of the sloping surface to the vertical. The analysis is tested by comparing it with laboratory measurements of the ablation of a sloping ice wall in contact with salty water. We apply the model to make predictions of the turbulent convective dissolution of a sloping ice shelf in the polar oceans.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献