Turbulent dynamics of sinusoidal oscillatory flow over a wavy bottom

Author:

Önder AsimORCID,Yuan Jing

Abstract

A direct numerical simulation study is conducted to investigate sinusoidal oscillatory flow over a two-dimensional wavy wall. The height and wavelength of the bottom profile, and the period and amplitude of the free-stream oscillation, are selected to mimic a wave-driven boundary layer over vortex ripples on a sandy seabed. Two cases with different Reynolds numbers$(Re)$are considered, and the higher-$Re$case achieves a fully developed turbulent state with a wide separation between the energy-containing and dissipative scales. The oscillatory flow is characterized by coherent columnar vortices, which are the main transport agents of turbulent kinetic energy and enstrophy. Two classes of coherent vortices are observed: (i) a primary vortex formed at the lee side of the ripple by flow separation at the crest; (ii) a secondary vortex formed beneath the primary vortex by vortex-induced separation. When the free-stream velocity weakens, these vortices form a counter-rotating vortex dipole and eject themselves over the crest with their mutual induction. Turbulence production peaks twice in a half-cycle; during the formation of the primary vortex and during the ejection of the vortex dipole. The intensity of the former peak remains low in the lower-$Re$case, as the vortex dipole follows a higher altitude trajectory limiting its interactions with the bottom, and leaving minimal residual turbulence around the ripples for the subsequent half-cycle. Flow snapshots and spectral analysis reveal two dominant three-dimensional features: (i) an energetic vortex mode with a preferred spanwise wavelength close to the ripple wavelength; (ii) streamwise vortical structures in near-wall regions with a relatively shorter spanwise spacing influenced by viscous effects. The vortex mode becomes strong when the cores of the vortices are strained to an elliptical form while moving towards the crest. Following the detachment of the vortices from the ripple, the vortex mode in the higher-$Re$case breaks down the spanwise coherence of the columnar vortices and decomposes them into intermittent patches of turbulent vortex clusters. The distribution of wall shear stress over the ripple is also analysed in detail. The peak values are observed near the ripple crest around the ejection of the vortex dipole and the maximum free-stream velocity. In the former, both the vortex mode and streamwise vortices have strong footprints on the wall, yielding a bimodal wall-shear-stress spectrum with two distinctive peaks. In the second high-stress regime, decaying coherent vortices impose strong inhomogeneity on the wall shear stress as their wall-attached parts sweep the ripples. These spanwise variations in the wall shear provide insights into the instability of two-dimensional sand ripples.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3