Self-organized criticality of turbulence in strongly stratified mixing layers

Author:

Salehipour HesamORCID,Peltier W. R.,Caulfield C. P.ORCID

Abstract

Motivated by the importance of stratified shear flows in geophysical and environmental circumstances, we characterize their energetics, mixing and spectral behaviour through a series of direct numerical simulations of turbulence generated by Holmboe wave instability (HWI) under various initial conditions. We focus on circumstances where the stratification is sufficiently ‘strong’ so that HWI is the dominant primary instability of the flow. Our numerical findings demonstrate the emergence of self-organized criticality (SOC) that is manifest as an adjustment of an appropriately defined gradient Richardson number, $Ri_{g}$, associated with the horizontally averaged mean flow, in such a way that it is continuously attracted towards a critical value of $Ri_{g}\sim 1/4$. This self-organization occurs through a continuously reinforced localization of the ‘scouring’ motions (i.e. ‘avalanches’) that are characteristic of the turbulence induced by the breakdown of Holmboe wave instabilities and are developed on the upper and lower flanks of the sharply localized density interface, embedded within a much more diffuse shear layer. These localized ‘avalanches’ are also found to exhibit the expected scale-invariant characteristics. From an energetics perspective, the emergence of SOC is expressed in the form of a long-lived turbulent flow that remains in a ‘quasi-equilibrium’ state for an extended period of time. Most importantly, the irreversible mixing that results from such self-organized behaviour appears to be characterized generically by a universal cumulative turbulent flux coefficient of $\unicode[STIX]{x1D6E4}_{c}\sim 0.2$ only for turbulent flows engendered by Holmboe wave instability. The existence of this self-organized critical state corroborates the original physical arguments associated with self-regulation of stratified turbulent flows as involving a ‘kind of equilibrium’ as described by Turner (1973, Buoyancy Effects in Fluids, Cambridge University Press).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3