A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities

Author:

Guha Anirban,Lawrence Gregory A.

Abstract

AbstractHomboe (Geophys. Publ., vol. 24, 1962, pp. 67–112) postulated that resonant interaction between two or more progressive, linear interfacial waves produces exponentially growing instabilities in idealized (broken-line profiles), homogeneous or density-stratified, inviscid shear layers. Here we have generalized Holmboe’s mechanistic picture of linear shear instabilities by (i) not initially specifying the wave type, and (ii) providing the option for non-normal growth. We have demonstrated the mechanism behind linear shear instabilities by proposing a purely kinematic model consisting of two linear, Doppler-shifted, progressive interfacial waves moving in opposite directions. Moreover, we have found a necessary and sufficient (N&S) condition for the existence of exponentially growing instabilities in idealized shear flows. The two interfacial waves, starting from arbitrary initial conditions, eventually phase-lock and resonate (grow exponentially), provided the N&S condition is satisfied. The theoretical underpinning of our wave interaction model is analogous to that of synchronization between two coupled harmonic oscillators. We have re-framed our model into a nonlinear autonomous dynamical system, the steady-state configuration of which corresponds to the resonant configuration of the wave interaction model. When interpreted in terms of the canonical normal-mode theory, the steady-state/resonant configuration corresponds to the growing normal mode of the discrete spectrum. The instability mechanism occurring prior to reaching steady state is non-modal, favouring rapid transient growth. Depending on the wavenumber and initial phase-shift, non-modal gain can exceed the corresponding modal gain by many orders of magnitude. Instability is also observed in the parameter space which is deemed stable by the normal-mode theory. Using our model we have derived the discrete spectrum non-modal stability equations for three classical examples of shear instabilities: Rayleigh/Kelvin–Helmholtz, Holmboe and Taylor–Caulfield. We have shown that the N&S condition provides a range of unstable wavenumbers for each instability type, and this range matches the predictions of the normal-mode theory.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-field coupling in the scrape-off layer of tokamak plasma;Nuclear Fusion;2024-08-30

2. Vorticity wave interaction, Krein collision, and exceptional points in shear flow instabilities;Physical Review E;2023-12-28

3. Structural Description of Geophysical Random Fields with Non-Gaussian Statistics;Izvestiya, Atmospheric and Oceanic Physics;2023-04

4. Structural Description of Geophysical Random Fields with Non-Gaussian Statistics;Известия Российской академии наук. Физика атмосферы и океана;2023-03-01

5. Sensitivity of wave merging and mixing to initial perturbations in Holmboe instabilities;Physics of Fluids;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3