Locomotion of a single-flagellated bacterium

Author:

Park Yunyoung,Kim YongsamORCID,Lim Sookkyung

Abstract

Single-flagellated bacteria propel themselves by rotating a flagellar motor, translating rotation to the filament through a compliant hook and subsequently driving the rotation of the flagellum. The flagellar motor alternates the direction of rotation between counterclockwise and clockwise, and this leads to the forward and backward directed swimming. Such bacteria can change the course of swimming as the hook experiences its buckling caused by the change of bending rigidity. In this paper, we present a comprehensive model of a monotrichous bacterium as a free swimmer in a viscous fluid. We describe a cell body as a rigid body using the penalty method and a flagellum as an elastic rod using Kirchhoff rod theory. The hydrodynamic interaction of the bacterium is described by the regularized Stokes formulation. Our model of a single-flagellated micro-organism is able to mimic a swimming pattern that is well matched with the experimental observation. Furthermore, we find the critical thresholds of the rotational frequency of the motor and the bending modulus of the hook for the buckling instability, and investigate the dependence of the buckling angle and the reorientation of the swimming cell after buckling on the physical and geometrical parameters of the model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3