Spatial modulations of kinetic energy in the roughness sublayer

Author:

Basley JérémyORCID,Perret Laurent,Mathis RomainORCID

Abstract

High-Reynolds-number experiments are conducted in the roughness sublayer of a turbulent boundary layer developing over a cubical canopy. Stereoscopic particle image velocimetry is performed in a wall-parallel plane to evidence a high degree of spatial modulation of the small-scale turbulence around the footprint of large-scale motions, despite the suppression of the inner layer by the high roughness elements. Both Fourier and wavelets analyses show that the near-wall cycle observed in smooth-wall-bounded flows is severely disrupted by the canopy, whose wake in the roughness sublayer generates a new range of scales, closer to that of the outer-layer large-scale motions. This restricts significantly scale separation, hence a diagnostic method is developed to divide carefully and rationally the fluctuating velocity fields into large- and small-scale components. Our analysis across all turbulent kinetic energy terms sheds light on the spatial imprint of the modulation mechanism, revealing a very different signature on each velocity component. The roughness sublayer shows a preferential arrangement of the modulated scales similar to what is observed in the outer layer of smooth-wall-bounded flows – small-scale turbulence is enhanced near the front of high momentum regions and damped at the front of low momentum regions. More importantly, accessing spanwise correlations reveals that modulation intensifies the most along the flanks of the large-scale motions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3