Bubble shape oscillations of finite amplitude

Author:

Guédra MatthieuORCID,Inserra Claude

Abstract

Shape oscillations arising from the spherical instability of an oscillating bubble can be sustained in a stationary acoustic field. Describing such a steady state requires that nonlinear saturation effects are accounted for to counteract the natural exponential growth of the instability. In this paper, we analyse the establishment of finite-amplitude bubble shape oscillations as a consequence of nonlinear interactions between spherical and non-spherical modes. The set of coupled dynamical equations describing the volume pulsation and the shape oscillations is solved using a perturbation technique based on the Krylov–Bogoliubov method of averaging. A set of first-order differential equations governing the slowly varying amplitudes and phases of the different modes allows us to reproduce the exponential growth and subsequent nonlinear saturation of the most unstable, parametrically excited, shape mode. Solving these equations for steady-state conditions leads to analytical expressions of the modal amplitudes and derivations of the conditionally stable and absolutely stable thresholds for shape oscillations. The analysis of the solutions reveals the existence of a hysteretic behaviour, indicating that bubble shape oscillations could be sustained for acoustic pressures below the classical parametric threshold.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3