Author:
THO PAUL,MANASSEH RICHARD,OOI ANDREW
Abstract
Cavitation microstreaming is a well-known phenomenon; however, few flow visualizations or measurements of the velocity fields have been conducted. In this paper micro-PIV (particle image velocimetry) measurements and streak photography were used to study the flow field around a single and two oscillating bubbles resting on a solid boundary. The mode of oscillation of the bubble was also measured in terms of the variation in the radius of the bubble and the movement of the bubble's centroid so that the streaming flow field could be accurately related to the bubble's oscillatory motion. The mode of oscillation was found to vary primarily with the applied acoustic frequency. Several modes of oscillation were investigated, including translating modes where the bubble's centroid moves along either a single axis, an elliptical orbit or a circular orbit. The flow field resulting from these oscillation modes contains closed streamlines representing vortical regions in the vicinity of the bubble. The translating modes were observed to occur in sequential order with the acoustic excitation frequency, changing from a translation along a single axis, to an elliptical orbit and finally to a circular orbit, or vice versa. Following this sequence, there is a corresponding transformation of the streaming pattern from a symmetrical flow structure containing four vortices to a circular vortex centred on the bubble. Despite some inconsistencies, there is general agreement between these streaming patterns and those found in existing theoretical models. Volume and shape mode oscillations of single bubbles as well as several different cases of multiple bubbles simultaneously oscillating with the same frequency and phase were also investigated and show a rich variety of streaming patterns.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
187 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献