Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing

Author:

Yao JieORCID,Chen Xi,Hussain FazleORCID

Abstract

Drag control using a newly developed spanwise opposed wall-jet forcing (SOJF) method is studied via direct numerical simulation of the incompressible Navier–Stokes equations in a turbulent channel flow (at the friction Reynolds numbers $Re_{\unicode[STIX]{x1D70F}}=180$ and 550). SOJF is characterized by three control parameters: the forcing amplitude $A^{+}$, the spanwise spacing $\unicode[STIX]{x1D706}^{+}$ and the wall-jet height $y_{c}^{+}$ ($+$ indicates viscous scaling). At $Re_{\unicode[STIX]{x1D70F}}=180$, notable drag reduction is achieved for wide ranges of $A^{+}$, $\unicode[STIX]{x1D706}^{+}$ and $y_{c}^{+}$, with an optimal drag reduction of approximately 19 % found for $A^{+}\approx 0.015$, $\unicode[STIX]{x1D706}^{+}\approx 1200$ and $y_{c}^{+}\approx 30$. The drag reduction results from mergers of numerous low-speed typical individual streaks together by the wall jets, so that the slope of the merged streak envelope and hence the streak strength are reduced below the critical values required for streak instability as well as for transient growth; consequently, the generation of drag inducing near-wall streamwise vortices is suppressed. Through analysis using the FIK identity (Fukagata et al. Phys. Fluids, vol. 14 (11), 2002, pp. L73–L76) in combination with the triple decomposition and the spanwise wavenumber spectrum of the Reynolds shear stress, we find that the control significantly decreases skin friction due to the small scale random turbulent structures (from 75 to 23 % for the optimal case), but injects a dominant contribution at the forcing scale (approximately 34 %). As $A^{+}$ or $y_{c}^{+}$ increases, the drag reduction degrades due to the downwash near the initiation of the forcing wall jet. The energy input required for the excitation is found to be small, yielding a 17 % net power saving for the optimal control case. To determine the $Re$ dependence of the drag reduction, the control strategy is further validated at a higher $Re_{\unicode[STIX]{x1D70F}}=550$. If the control parameters are kept the same as at $Re_{\unicode[STIX]{x1D70F}}=180$ (i.e. $A^{+}\approx 0.015$, $\unicode[STIX]{x1D706}^{+}\approx 1200$, $y_{c}^{+}\approx 30$), the drag reduction decreases to 10 %; however, interestingly, with modestly changed parameters ($A^{+}\approx 0.018$, $\unicode[STIX]{x1D706}^{+}\approx 1700$, $y_{c}^{+}\approx 50$), drag reduction increases to about 15 %. This additional drag reduction results from the further suppression of turbulent structures in the buffer and log regions. This result, therefore, suggests prospects for drag reduction at even higher $Re$ via a proper choice of the SOJF parameters.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3