Breaking of modulated wave groups: kinematics and energy dissipation processes

Author:

De Vita FrancescoORCID,Verzicco RobertoORCID,Iafrati Alessandro

Abstract

The two-dimensional flow induced by the breaking of modulated wave trains is numerically investigated using the open source software Gerris (Popinet, J. Comput. Phys., vol. 190, 2003, pp. 572–600; J. Comput. Phys., vol. 228, 2009, pp. 5838–5866. The two-phase flow is modelled by the Navier–Stokes equations for a single fluid with variable density and viscosity, coupled with a volume-of-fluid (VOF) technique for the capturing of the interface dynamics. The breaking is induced through the Benjamin–Feir mechanism, by adding two sideband disturbances to a fundamental wave component. The evolution of the wave system is simulated starting from the initial condition until the end of the breaking process, and the role played by the initial wave steepness is investigated. As already noted in previous studies as well as in field observations, it is found that the breaking is recurrent and several breaking events are needed before the breaking process finally ceases. The down-shifting of the fundamental component to the lower sideband is made irreversible by the breaking. At the end of the breaking process the magnitude of the lower sideband component is approximately 80 % of the initial value of the fundamental one. The time histories of the energy content in water and the energy dissipation are analysed. The whole breaking process dissipates a fraction of between twenty and twenty-five per cent of the pre-breaking energy content, independently of the initial steepness. The energy contents of the different waves of the group are evaluated and it is found that after the breaking, the energy of the most energetic wave of the group decays as $t^{-1}$ .

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3