Laboratory observations of wave group evolution, including breaking effects

Author:

TULIN MARSHALL P.,WASEDA TAKUJI

Abstract

The nonlinear evolution of deep-water wave groups, which are initiated by unstable three-wave systems, have been observed in a large wave tank (50 m long, 4.2 m wide, 2.1 m deep), equipped with a programmable, high-resolution wave generator. A large number of experiments were conducted (over 80 cases) for waves 1.0–4.0 m long, initial steepness ε=0.10–0.28, and normalized sideband frequency differences, δω=δω, 0.2–1.4. Using an array of eight high-resolution wave wires distributed in range (up to 43 m fetch), spectral evolution was studied in detail including the effect of background disturbances on the evolution. Minimizing those, new observations were made which extend the pioneering work of Lake et al. (1977) and of Melville (1982). Foremost, near recurrence without downshifting was observed without breaking, despite a significant but reversible energy transfer to the lower sideband at peak modulation; complete recurrence was prevented by the spreading of discretized energy to higher frequencies. Strong breaking was found to increase the transfer of energy from the higher to the lower sideband and to render that transfer irreversible. The end state of the evolution following strong breaking is an effective downshifting of the spectral energy, where the lower and the carrier wave amplitudes nearly coincide; the further evolution of this almost two-wave system was not studied here. Breaking during strong modulation was observed not only for the fastest growing initial condition, but over a wide parameter range. An explanation of the sideband behaviour in both the breaking and non-breaking case was given based on wave energy and momentum considerations, including the separate effects of energy and momentum loss due to breaking, and transfer to discretized higher frequencies throughout the spectra. Attention was drawn to the latter, which was almost universally observed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3