Abstract
The steady behaviour of a rarefied gas around a rotating sphere is studied numerically on the basis of the linearised ellipsoidal statistical model of the Boltzmann equation, also known as the ES model, and the Maxwell diffuse–specular boundary condition. It is demonstrated numerically that the normal derivative of the circumferential component of the flow velocity and that of the heat flux diverge on the boundary with a rate $s^{-1/2}$, where $s$ is the normal distance from the boundary. Further, it is demonstrated that the diverging term is proportional to the magnitude of the jump discontinuity of the velocity distribution function on the boundary, which originates from the mismatch of the incoming and outgoing data on the boundary. The moment of force exerted on the sphere is also obtained for a wide range of the Knudsen number and for various values of the accommodation coefficient.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献