Inverse Magnus Effect in a Rarefied Gas

Author:

Taguchi Satoshi,Tsuji Tetsuro

Abstract

AbstractThe transverse force exerted on a rotating sphere immersed in an otherwise uniform flow of a rarefied gas is investigated based on the Bhatnagar–Gross–Krook (BGK) model of the Boltzmann equation assuming the Maxwell boundary condition on the sphere. In several existing studies, it has been shown that the transverse force acting on the sphere, also known as the Magnus force, has opposite signs in the free molecular and continuum flows. The present study intends to clarify the force’s transition in terms of the Knudsen number (i.e., the reciprocal ratio of the sphere radius to the molecular mean free path) with a particular interest in the impact of the sphere’s surface accommodation. It is found that the threshold of the Knudsen number, at which the transverse force changes the sign, depends only weakly on the accommodation coefficient, suggesting certain robustness in the threshold. The present study is an extension of the previous work [S. Taguchi and T. Tsuji, J. Fluid. Mech. 933, A37 (2022)], in which the case of complete accommodation (diffuse reflection) is exclusively considered.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3