Vortex sheet roll-up revisited

Author:

DeVoria A. C.ORCID,Mohseni K.ORCID

Abstract

The classical problem of roll-up of a two-dimensional free inviscid vortex sheet is reconsidered. The singular governing equation brings with it considerable difficulty in terms of actual calculation of the sheet dynamics. Here, the sheet is discretized into segments that maintain it as a continuous object with curvature. A model for the self-induced velocity of a finite segment is derived based on the physical consideration that the velocity remain bounded. This allows direct integration through the singularity of the Birkhoff–Rott equation. The self-induced velocity of the segments represents the explicit inclusion of stretching of the sheet and thus vorticity transport. The method is applied to two benchmark cases. The first is a finite vortex sheet with an elliptical circulation distribution. It is found that the self-induced velocity is most relevant in regions where the curvature and the sheet strength or its gradient are large. The second is the Kelvin–Helmholtz instability of an infinite vortex sheet. The critical time at which the sheet forms a singularity in curvature is accurately predicted. As observed by others, the vortex sheet strength forms a finite-valued cusp at this time. Here, it is shown that the cusp value rapidly increases after the critical time and is the impetus that initiates the roll-up process.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Westwater, F. L. 1935 The rolling up of a surface of discontinuity behind an aerofoil of finite span. Report R&M 1692. Aeronautical Research Council.

2. Long-time simulations of the Kelvin–Helmholtz instability using an adaptive vortex method;Sohn;Phys. Rev. E,2010

3. Vortex Interactions

4. A higher order panel method applied to vortex sheet roll-up

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3