On the role of unsteadiness in impulsive-flow-driven shear instabilities: precursors of fragmentation

Author:

Shen N.ORCID,Bourouiba L.ORCID

Abstract

Shear instabilities at the interface of two fluids, such as classical Kelvin–Helmholtz instability (KHI), is the precursor of interface destabilization, leading to fluid fragmentation critical in a wide range of applications. While many insights into such instabilities are derived for steady background forcing flow, unsteady impulse flows are ubiquitous in environmental and physiological processes. Yet, little is understood on how unsteadiness shapes the initial interface amplification necessary for the onset of its topological change enabling subsequent fragmentation. In this combined theoretical, numerical and experimental study, we focus on an air-on-liquid interface exposed to canonical unsteady shear flow profiles. Evolution of the perturbed interface is formulated theoretically as an impulse-driven initial value problem using both linearized potential flow and nonlinear boundary integral methods. We show that the unsteady airflow forcing can amplify the interface's inherent gravity–capillary wave, up to wave-breaking transition, even if the configuration is classically KH stable. For impulses much shorter than the gravity–capillary wave period, it is the cumulative action, akin to total energy, that determines amplification, independent of the details of the impulse profile. However, for longer impulses, the details of the impulse profile become important. In this limit, akin to a resonance, it is the entangled history of the interaction of the forcing, i.e. the impulse, that changes rapidly in amplitude, and the response of the oscillating interface that matters. The insights gained are discussed and experimentally illustrated in the context of interface distortion and destabilization relevant for upper respiratory mucosalivary fluid fragmentation in violent exhalations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3