Gravity currents propagating into two-layer stratified fluids: vorticity-based models

Author:

Khodkar M. A.,Nasr-Azadani M. M.,Meiburg E.ORCID

Abstract

The vorticity-based modelling approach originally introduced by Borden & Meiburg (J. Fluid Mech., vol. 726, 2013b, R1) is extended to gravity currents propagating into two-layer stratified ambients. Vorticity models are developed for three different flow configurations: no upstream-propagating wave, an upstream-propagating expansion wave only and an upstream-propagating expansion wave and a bore. For a given gravity current height and stratification strength, along with ambient inflow layer thicknesses and velocities, the models yield the gravity current velocity, the bore and expansion wave properties and the ambient outflow layer thicknesses and velocities. We furthermore establish which of the three configurations will occur in a given parameter regime. Since energy-related closure assumptions are not required for any of the configurations, we can determine the dissipation as a function of the gravity current height, for a given set of flow parameters. To investigate which gravity current height is selected in real flows, we carry out two-dimensional Navier–Stokes simulations for comparison. These yield gravity current heights close to the vorticity model solutions for energy-conserving flows. Hence we adopt these energy-conserving solutions as the vorticity model predictions. We subsequently discuss these predictions in the context of earlier models by other authors, and of two-layer stratified flows over obstacles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3